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Abstract. Techniques for learning automata have been adapted to automatically
infer assumptions in assume-guarantee compositional verification. Learning, in
this context, produces assumptions and modifies them using counterexamples
obtained by model checking components separately. In this process, the inter-
face alphabets between components, that constitute the alphabets of the assump-
tion automata, are fixed: they includé actions through which the components
communicate. This paper introducalphabet refinement novel technique that
extends the assumption learning process to also infer interface alphabets. The
technique starts with only subsebf the interface alphabet and adds actions to it

as necessary until a given property is shown to hold or to be violated in the sys-
tem. Actions to be added are discovered by counterexample analysis. We show
experimentally that alphabet refinement improves the current learning algorithms
and makes compositional verification by learning assumptions more scalable than
non-compositional verification.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent soft-
ware. Given a finite model of a system and of a required property, model checking
determines automatically whether the property is satisfied by the system. The limita-
tion of this approach, known as the “state-explosion” problem [9], is that it needs to
explore all the system states, which may be intractable for realistic systems.

Compositional verification addresses state explosion by a “divide and conquer” ap-
proach: properties of the system are decomposed into properties of its components and
each component is then checked separately. In checking components individually, one
needs to incorporate some knowledge of the contexts in which the components are ex-
pected to operate correctly. Assume-guarantee reasoning [17, 22] addresses this issue
by introducing assumptions that capture the expectations of a component from its envi-
ronment. Assumptions have traditionally been defined manually, which has limited the
practical impact of assume-guarantee reasoning.

Recent work [12, 5] has proposed a framework based on learninduihatuto-
matesassume-guarantee model checking. Since then, several similar frameworks have



been presented [3, 20, 24]. To check that a system consisting of compdheatsi M,
satisfies a propert?, the framework automatically guesses and refines assumptions for
one of the components to satisB; which it then tries to discharge on the other com-
ponent. Our approach is guaranteed to terminate, stating that the property holds for the
system, or returning a counterexample if the property is violated.

Compositional techniques have been shown particularly effective for well-structured
systems that have small interfaces between components [7, 14]. Interfaces caabist of
communication points through which the components may influence each other’s be-
havior. In the learning framework of [12] the alphabet of the assumption automata being
built includesall the actions in the component interface. However, in a case study pre-
sented in [21], we observed that a smaller alphabet was sufficient to prove the property.
This smaller alphabet was determined through manual inspection and with it, assume-
guarantee reasoning achieves orders of magnitude improvement over monolithic (i.e.,
non-compositional) model checking [21].

Motivated by the successful use of a smaller alphabet in learning, we investigate
here whether we can automate the process of discovering a smaller alphabet that is suf-
ficient for checking the desired properties. Smaller alphabet means smaller interface
between components, which may lead to smaller assumptions, and hence to smaller
verification problems. We propose a novel technique callptiabet refinementhat
extends the learning framework to start with a small subset of the interface alphabet
and to add actions into it as necessary until a required property is shown to hold or to
be violated in the system. Actions to be added are discovered by analysis of the coun-
terexamples obtained from model checking the components. We study the properties of
alphabet refinement and show experimentally that it leads to time and memory savings
as compared to the original learning framework [12] and monolithic model checking.
The algorithm has been implemented within the LTSA model checking tool [19].

The algorithm is applicable to and may benefit any of the previous learning-based
approaches [3, 20, 24]; it may also benefit other compositional analysis techniques.
Compositional Reachability Analysis (CRA), for example, computes abstractions of
component behaviors based on their interfaces. In the context of property checking [7],
smaller interfaces may result in more compact abstractions, leading to smaller state
spaces when components are put together.

The rest of the paper is organized as follows. Section 3 presents a motivating exam-
ple. Section 4 presents our original learning framework from [12]. Section 5 presents
the main algorithm for interface alphabet refinement. Section 6 discusses properties
and Section 7 presents an experimental evaluation of the proposed algorithm. Section 8
surveys some related work and Section 9 concludes the paper. In the next section we
review the main ingredients of the LTSA tool and the L* learning algorithm.

2 Background

Labeled Transition Systems (LTSs)LTSA is an explicit-state model checker that an-
alyzes finite-state systems modeledaseled transition system&TSs). LetA be the
universal set of observable actions andrléenote a special action that is unobservable.
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Fig. 1. Example LTS for a client (left) and a mutual exclusion property (right)

An LTS M is a tuple(Q, aM, J, qo), where:Q is a finite non-empty set of states;
aM C Ais asetof observable actions called &iyghabetof M; 6 C Qx (aMU{7})x
Q is a transition relation, ang, is the initial state. An LTSV is non-deterministic
if it contains 7-transitions or if3(q, a,q’), (¢,a,q¢”) € § such thaty’ # ¢”. Other-
wise, M is deterministic We user to denote a speciarror statethat has no out-
going transitions, and! to denote the LTS{r}, 4,0, 7). Let M = (Q,aM,d, qo)
andM' = (Q',aM’', ¥, q,). We say thatM transitsinto M’ with actiona, denoted
M % M, if and only if (o, a,¢y) € 6 and eitherQ = Q',aM = aM’, ands = &'
for g{, # =, or, in the special case whegg = 7, M’ = II.

Consider a simple client-server application (from [21]). It consistssd#raercom-
ponent and two identicallient components that communicate through shared actions.
Each client sendsequestsfor reservations to use a common resource, waits for the
server tograntthe reservation, uses the resource, and taacelsthe reservation. For
example, the LTS of a client is shown in Figure 1 (left), whete 1, 2. The server can
grantor denya request, ensuring that the resource is used only by one client at a time
(the LTS of the server is in the Appendix).

Parallel Composition. Parallel composition||” is a commutative and associative op-
erator such that: given LTS®; = (Q', aMi, 4%, ¢}) and My = (Q?%, aM,, 62, ¢3),
M, || M is II if either one of My, M is II. Otherwise,M; || M is an LTS
M = {(Q,aM, d,q) whereQ = Q' x Q2,qo = (¢}, q3),aM = aM; U aM,, ands

is defined as follows, whereis either an observable actionor

My % M, a ¢ aM, My % M|, My % My,a# 7
My || My = M || M, My || My = M || M}

Traces A tracet of an LTS M is a sequence of observable actions starting from the
initial state and obeying the transition relation. The set of all tracéd @ called the
languageof M, denotedC(M ). For any trace atrace LTScan be constructed whose
language consists of only We sometimes abuse the notation and denote ltigth a
trace and its trace LTS. The meaning should be clear from the context’ Eo, we
denote byt | 5; the trace obtained by removing franall occurrences of actions¢ X.
Similarly, M | 5> is defined to be an LTS over alphalbigtwhich is obtained from\/ by
renaming tor all the transitions labeled with actions that are nokinLet, ¢ be two
traces. Letd, A’ be the sets of actions occurringtint’, respectively. By theymmetric
differenceof t andt’ we mean the symmetric difference of sgteind A’.

Safety properties We call a deterministic LTS not containinga safety LTSA safety
propertyP is specified as aafety LTSvhose languagé€(P) defines the set of accept-
able behaviors over P. For example, the mutual exclusion property in Figure 1 (right)
captures the desired behaviour of the the client-server application discussed earlier.
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Fig. 2. Client-Server Example: complete interface (left) and derived assumption with alphabet
smaller than complete interface alphabet (right).

An LTS M satisfiesP, denotedV! = P, iff Vo € M : o|,p€ L(P). For checking
a propertyP, its safety LTS iscompletedoy adding error state and transitions on
all the missing outgoing actions from all states intso that the resulting transition
relation is total and deterministic; the resulting LTS is denotedPhy.. LTSA checks
M = P by computing || P.,, and checking ifr is reachable in the resulting LTS.

Assume-guarantee reasoningn the assume-guarantee paradigm a formula is a triple
(A)M (P), whereM is acomponentP is a property, and! is an assumption aboi’s
environment. The formula is true if whenevf is part of a system satisfying, then

the system must also guarantBeln LTSA, checking(A4)M (P) reduces to checking

A || M | P. The simplest assume-guarantee proof rule shows that) ¥/, (P) and
(true) M>(A) hold, then(true) M, || M2 (P) also holds:

(Premise 1) A) M, (P)
(Premise 2)true) M>(A)
(trug) My || M2(P)

Coming up with appropriate assumptions used to be a difficult, manual process. Re-
cent work has proposed an off-the-shelf learning algorithm, L*, to derive appropriate
assumptionautomatically{12].

The L* learning algorithm . L* was developed by Angluin [4] and later improved by
Rivest and Schapire [23]. L* learns an unknown regular langdageer alphabet”
and produces a deterministic finite state automaton (DFA) that accepts it. L* interacts
with a Minimally Adequate Teachehat answers two types of questions from L*. The
first type is anembership quergsking whether a stringe X* isin U. For the second
type, the learning algorithm generatesanjectureA and asks whethef(A) = U. If
L(A) # U the Teacher returns a counterexample, which is a stringhe symmetric
difference of£(A) andU. L* is guaranteed to terminate with a minimal automatbn
for U. If A hasn states, L* makes at most — 1 incorrect conjectures. The number
of membership queries made by L*@kn? + nlogm), wherek is the size of¥, n

is the number of states in the minimal DFA o, andm is the length of the longest
counterexample returned when a conjecture is made.

3 Assume-guarantee Reasoning and Small Interface Alphabets

We illustrate the benefits of smaller interface alphabets for assume guarantee reason-
ing through the client-server example of Section 2. To check the property in a com-
positional way, assume that we break up the system ihfp:= Client; || Client



and M, = Server. Thecompletealphabet of the interface betweéd; | P and
M, (see Figure 2 (left)) is{client;.cance]client;.grant client.deny, clien.request,
client.cancelclient.grant, cliens.deny, client.reques}.

Using this alphabet and the learning method of [12] yields an assumption with 8
states (see Appendix). However, a (much) smaller assumption is sufficient for prov-
ing the mutual exclusion property (see Figure 2 (right)). The assumption alphabet is
{client.cancel, client.grant,client.cancel, client.grant, which is a strict subset of the
complete interface alphabet (and is, in fact, the alphabet of the property). This assump-
tion has just 3 states, and enables more efficient verification than the 8-state assumption
obtained with the complete alphabet. In the following sections, we present techniques
to infer smaller interface alphabets (and the corresponding assumptions) automatically.

4 Learning for Assume-guarantee Reasoning

In previous work [12], we developed an automated assume-guarantee framework that
uses L* to infer assumptions for compositional verification. A central notion of the
framework is that of theveakest assumptifi¥], defined formally here.

Definition 1 (Weakest Assumption forX’). Let M; be an LTS for a componeri, be

a safety LTS for a property required 8f,, and X be the interface of the component
to the environment. The weakest assumptqys, of A/, for X' and for propertyP is

a deterministic LTS such that: BA,, »» = X, and 2) for any componenit/s, M; ||
(Mals) E Piff My = Ay, s

The notion of a weakest assumption depends on the interface between the component
and its environment. Accordingly, projection &1, to X' forces M, to communicate
with our module only througlt’ (second condition above). In [14] we showed that the
weakest assumptions exist for components expressed as LTSs and safety properties and
provided an algorithm for computing these assumptions.

The definition above refers @ny environment component/, that interacts with
component)M; via an alphabef’. When M is given, there is a natural notion of the
completeinterfacebetweeni/; and its environmeni/,, when propertyP is checked.

Definition 2 (Interface Alphabet). Let M; and M, be component LTSs, arfiélbe a
safety LTS. The interface alphabt of M, is defined asX; = (aM; UaP)NaMs.

Definition 3 (Weakest Assumption).Given My, M, and P as above, the weakest
assumptio,, is defined asi,, s, .

Note that, to deal with any system-level property, we allow properties in definition 2
to include actions that are not inl\/; but are inaMs. These actions need to be in the
interface since they are controllable bfs. Moreover from the above definitions, it fol-
lows that the assumptiaf,, is indeed theveakestit characterizes all the environments
M, that, together with\/,, satisfy propertyP, i.e., M, || My = Piff My E A,,.

Learning framework . The original learning framework from [12] is illustrated in Fig-
ure 3. The framework check®/; || M> = P by checking the two premises of the
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Fig. 3. Learning framework.

assume-guarantee rule separately, and using the conjedtfira® L* as assumptions.
The automatori output by L* is, in the worst case, theeakest assumptioa,,. The
alphabet given to the learner is fixedXo= ;.

The Teacher is implemented using model checking. For membership queries on
string s, the Teacher uses LTSA to che¢X M, (P). If true, thens € L£(A,), so the
Teacher returns true. Otherwise, the answer to the query is false. The conjectures re-
turned by L* are intermediate assumptioAs The Teacher implements twaracles
Oracle 1lguides L* towards a conjecture that makeb M; (P) true. Once this is ac-
complishedQracle 2is invoked to dischargél on M. If this is true, then the assume
guarantee rule guarantees tffaholds on)M; || M. The Teacher then returns true and
the computed assumptioh Note thatA is not necessarily,,, it can bestrongerthan
Ay, ie, L(A) C L(Ay), but the computed assumption is good enough to prove that
the property holds or is violated. If model checking returns a counterexample, further
analysis is needed to determinéifis indeed violated inV/; || M- or if A is imprecise
due to learning, in which cas& needs to be modified.

Counterexample analysis Tracet is the counterexample from Oracle 2 obtained by
model checkindtrue) M- (A). To determine it is a real counterexamplieg,, if it leads

to error onM; || My = P, the Teacher analyzeson M; || P.,... In doing so, the
Teacher needs to first projeccbnto the assumption alphahgt that is the interface of
Ms to My || Pe,r. Then the Teacher uses LTSA to chegks) M, (P). If the error
state is not reached during the model checkirig,not a real counterexample, ahig;

is returned to the learner L* to modify its conjecture. If the error state is reached, the
model checker returns a counterexamptbat witnesses the violation @ on M in

the context ot | . With the assumption alphabg&t = X7, ¢ is guaranteed to be a real
error trace onV/; || M || Pe.rr [12]. However, as we shall see in the next section, if
X C Xy, cis not necessarily a real counterexample and further analysis is needed.

5 Learning with Alphabet Refinement

Let M, and M, be components? be a propertyX’; be the interface alphabet, atd
be an alphabet such that C X';. Assume that we use the learning framework of the



counterex counterex
c t
l l Extended Counterex

Analysis
— Output: My || Mg |= P
. . false
Learning LTsA: (tls YM1ACPYESE o error
Framework Extended Output: e
counterex Cnunlter_ex My ||Mg = P
cand ¢ Analysis Refiner: compare
T tlsp, cly I
updateX”; restart i
p different P, updates>
actions  restart
@) ()

Fig. 4. Learning with alphabet refinement (a) and additional counterexample analysis (b).

previous section, but we now set this smalletto be the alphabet of the assumption
that the framework learns. From the correctness of the assume-guarantee rule, if the
framework reports truel/; | My = P. When it reports false, it is because it finds a
tracet in M, that falsifies(t] ;) M1 (P). This, however, does not necessarily mean that
M, || M2 = P. Real violations are discovered by our original framework only when
the alphabet iy, and are trace8 of M, that falsify (/| 5, ) M7 (P).

We illustrate this with the client-server example. Assuftie= {client.cance]
client;.grant client.grant, smaller thar’; = {client.cance] client;.grant client;.deny,
client;.request, clientcance] client.grant client.deny, client.reques}. Learning with
X produces tracet = (client.request client.grant client.cance] client.request
clien.grand. Projected ta¥, this becomes| ;= (client.grant client.gran. In the
context oft|s;,, M; = Clients violates the property since Clignt Client, || P.,
contains the following behavior (see Figure 2):

(07 0’ 0) clienmquest(l’ 0’ 0) clienmquest(l’ 1, 0) cIieE.g)rant(l’ 2’ 2) cIieMrant(Z 27 error).
Learning therefore reporfalse This behavior is not feasible, however, in the context
of t| 5,= (client.request client.grant client.cancelclient;.request client.grand.

This trace requires a clientancel to occur before the cligrgrant. Thus, in the con-
text of X7 the above violating behavior would be infeasible. We conclude that when
applying the learning framework with alphabets smaller Hiatif trueis reported then

the property holds in the system, but violations reported may be spurious.

5.1 Algorithm

We propose a technique callatbhabet refinementvhich extends our learning frame-
work to deal with smaller alphabets thah while avoiding spurious counterexamples.
The steps of the algorithm are as follows (see Figure 4 (a)):

1. Initialize X to a setS such thatS C X;.

2. Use the classic learning framework ot If the framework returngue, then report
true and go to step 4 (END). If the framework returns false with counterexamples
¢ (andt), go to the next step.

3. Performextended counterexample analysior c. If ¢ is a real counterexample,
then reportfalseand go to step 4 (END). I is spurious, themefine X, which
consists of adding td. actions fromY;. Go to step 2.



4. END of algorithm.

When spurious counterexamples are detected, the refiner extends the alphabet with
actions in the alphabet of the weakest assumption and the learning of assumptions is
restarted. In the worst casEj is reached, and as proved in our previous work, learning
then only reports real counterexamples. In the above high-level algorithm, the high-
lighted steps 1) alphabet initialization, 2) extended counterexample analysis and 3) al-
phabet refinement are further specified in the following.

Alphabet initialization . The correctness of our algorithm is insensitive to the initial
alphabet. We implement two options: 1) we set the initial alphabet to the empty set to
allow the algorithm to only take into account actions that it discovers, and 2) we set the
initial alphabet to those actions in the alphabet of the property that are alsgiie.,

aP N X; (in the experiments from Section 7 we used the second option). The intuition
for the latter option is that these interface actions are likely to be significant in proving
the property, since they are involved in its definition. A good initial guess of the alphabet
may achieve big savings in terms of time since it results in fewer refinement iterations.

Extended counterexample analysisAn additional counterexample analysis is ap-
pended to our original learning framework as illustrated in Figure 4(a). The steps of
this analysis are shown in Figure 4(b). The extension takes as inputs both the coun-
terexamplet returned by Oracle 2, and the counterexamptiat is returned by the
original counterexample analysis. We modified our “classic” learning framework (Fig-
ure 3) to return botl: and ¢ to be used in alphabet refinement (as explained below).
As discussed¢ is obtained becausg | x)M; (P) does not hold. The next step is to
check whether in fact uncovers a real violation in the system. As illustrated by our
client-server example, the results of checking || P... in the context of projected

to different alphabets may be different. The correct results are obtained by projecting
on the alphabek’; of the weakest assumption. Counterexample analysis therefore calls
LTSA to check(t] s, ) M1 {P). If LTSA finds an error, the resulting counterexample

is a real counterexample. If error is not reached, the alphabe¢eds to be refined.
Refinement proceeds as described next.

Alphabet refinement When spurious counterexamples are obtained by the learning
framework, we need to enrich the current alphabieso that these counterexamples are
eventually eliminated. A spurious counterexamplis caused by the fact that in the
context oft] s, this counterexample would not be obtained. Our refinement heuristics
are therefore based on comparirnandt| x, to discover actions ilV’; to be added to the
learning alphabet (for this reasers also projected ot in the refinement process).
We have currently implemented and experimented with the following heuristics:

AlIDiff: adds all the actions in the symmetric difference pf, andc| s, ; a potential
problem is that is that it may add too many actions too soon, but if it happens to
add useful actions, it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end looking for the first index
i where they disagree; if such ans found, both actions| s, (i),cls, (i) are
added to the alphabet.

Backward: same as Forward but scans from the end of the traces to the beginning.



5.2 Extension torr Modules

So far, we have discussed our algorithm for two components. We have extended al-
phabet refinement to modulesM, Ms, ... M,, for anyn > 2. In previous work,
we have extended learning (without refinementhtoomponents [12)]. To check if
M || Ms || ... || M, satisfiesP, we decompose it inta¥/; andMj = My || ... | M,
and the learning algorithm (without refinement) is invoked recursively for checking the
second premise of the assume-guarantee rule.

Learning with alphabet refinement uses recursion in a similar way. At each recursive
invocation for/;, we solve the following problem: find assumptig) and alphabet
X4, such that the rule premises hold:

Oracle 1:Mj || Aj ': Aj,1

Oracle 22Mj 1 || Mjyo || ... || My = Aj
HereA;_, is the assumption fak/;_; and plays the role of the property for the current
recursive call. Thus, the alphabet of the weakest assumption for this recursive invocation
is X7 = (aM; Uad;_1) N (aMjy1 UaM;io U...Uab,). If Oracle 2 returns
a counterexample, then the counterexample analysis and alphabet refinement proceed
exactly as in the 2 component case. At a new recursive recursive call;faith a new
A,_1, the alphabet of the weakest assumption is recomputed.

6 Properties of Learning with Refinement

In this section, we discuss properties of the proposed algorithm. We present here the
main results (proofs and helping lemmas are given in the Appendix) We first re-state
the correctness and termination of learmivithoutrefinement as proven in [12].

Theorem 1 (Termination and correctness for learning without refinement [12]).
Given components/; and M-, and propertyP, the learning framework in [12] ter-
minates and it returns true /1 || M> |= P and false otherwise.

For correctness and termination of learning with alphabet refinement, we first show
progress of refinement, meaning that at each refinement stage, new actions are discov-
ered to be added th.

Proposition 1 (Progress of alphabet refinement)Let 3. C 3; be the alphabet of the
assumption at the current alphabet refinement staget beta trace of\fs|| A, such
thatt| 5 leads to error oM, || P, by an error tracer, butt| 5;, does not lead to error
on M, ||P.,,. Thent| 5, # c¢| 5, and there exists an action in their symmetric difference
that is not inX.

Correctness for two (and) components follows from the assume guarantee rule and

the extended counterexample analysis. Termination follows from termination of the
original framework, from the progress property and also from the finiteness ahd

of n. Moreover, from the progress property it follows that the refinement algorithm for

two components has at mdgi; | iterations.



Theorem 2 (Termination and correctness of learning with alphabet refinement — 2
components).Given componentd/; and M,, and propertyP, the L* algorithmwith
alphabet refinemenéerminates and returns true ¥/, || M = P and false otherwise.

Theorem 3 (Termination and correctness of learning with alphabet refinement —
n components).Given componenta/,, M, ... M,, and propertyP, the recursive L*
algorithmwith alphabet refinemenérminates and returns true ¥/, || Ms||...|| M, =
P and false otherwise.

We also note a property of weakest assumptions, which states that by adding actions to
an alphabet’, the corresponding weakest assumption becomesker(i.e., contains
more behaviors) than the previous one.

Proposition 2. Assume componenfg; and Ms, property P and the corresponding
interface alphabet’;. Let X, >/ be sets of actions such that c X’ c X;. Then:
E(Aw,Z‘) g ‘C(Aw,E/) g E(Aw,ﬂl)-

With alphabet refinement, our framework adds actions to the alphabet, which trans-
lates into adding more behaviors to the weakest assumption that L* tries to prove. This
means that at each refinement stggehen the learner is started with a new alphabiget
such that¥;_; C X, the learner will try to learn an assumptiely, », that is weaker
than A, 5, ,, which was the goal of the learner in the previous stage. Moreover, all
these assumptions aseder-approximationsf the weakest assumptioty,, s, that is
necessary and sufficient to prove the desired property. Of course, as mentioned before,
at each refinement stage, the learner might stop earlier, i.e., before computing the cor-
responding weakest assumption. The above property allows re-use of learning results
across refinement stages (see Section 7).

7 Experiments

We implemented learning with alphabet refinement in Java, as a plug-in for the LTSA
model-checker. We present here an experimental evaluation of our implementation for
checking safety properties on concurrent models. The goal of our evaluation is to assess
the effect of alphabet refinement on learning, and to compare learning with alphabet
refinement with non-compositional model checking.

Models and properties In our experiments we used the following case studBss
Station[11] describes a self-serve gas station consisting ofistomers, two pumps,

and an operator. Fot = 3,4, 5, we checked the property that the operator correctly
gives change to a customer for the pump that he/she @ehn [11] models a graph-

ical user interface consisting &éf“artists”, a wrapper, a manager, a client initialization
module, a dispatcher, and two event dispatcherskFer2...5, we checked Property 2,
stating that the dispatcher notifies artists of an event before receiving a next event, and
Property 3, stating that the dispatcher only notifies artists of an event after it receives
that eventMER [21] models a component of the flight software for JPL's Mars Ex-
ploration Rovers (MER). The software containaser threads competing for resources
that are managed by a resource arbiter. Fot 2...6 we checked a mutual exclusion

10



Table 1. Comparison of 2-component learning with and without alphabet refinement.

Case No refinement | Refinement + bwd| Refinement + fwd | Refinement + allDif|
[AT] Mem.] Time [TA[[Mem.] Time [[A[[Mem.] Time [[A[] Mem.] Time

Gas Statior|3[177] 434 | - 8| 329 270 [37| 6.47| 36.52| 18| 458 | 7.76
4]195/100.21 - 8 | 24.06| 19.58 | 37 | 46.95| 256.82| 18| 36.06| 52.72
5|53(263.3§ - 8 |248.17 183.70| 20 (414.19 - 18(360.04 530.71

Chiron, 2/ 9] 130[123[8]122| 353 |8 122] 186 | 8] 1.22| 1.90
Property 2 |3| 21| 570 | 5.71 | 20| 6.10 | 23.82 | 20| 6.06 | 7.40 | 20| 6.06 | 7.77
4] 39| 27.10| 28.00| 38 | 44.20| 154.00| 38 | 44.20| 33.13 | 38| 44.20| 35.32
5(111/569.24607.72110, — 300 |110f - 300 |110] - 300

Chiron, 2/ 9] 116 | 110 | 3| 105| 073 | 3| 1.05] 0.73 | 3| 1.05| 0.74
Property 3 3| 25| 4.45| 6.39| 3 | 220| 093 | 3| 220 | 092 | 3| 2.20| 0.92
4|1 45|25.49|32.18| 3 | 813 | 1.69 | 3 | 813 | 167 | 3 | 8.13| 1.67
5[122/131.49246.84 3 |163.85 18.08 | 3 [163.85 18.05| 3 |163.85 17.99

MER 2/40| 657 784 6| 1.78| 101 | 6 | 1.78| 1.02 | 6 | 1.78 | 1.01
3|377/158.97 - 8 | 10.56| 11.86 | 8 | 10.56| 11.86 | 8 | 10.56| 11.85
4]38|391.24 - |10|514.411193.53 10 |514.411225.95 10 |514.411226.8(
[RoverExed2[11] 265] 1.82[ 4 [ 2.37] 253 [11[ 267 [ 417 [11] 254 2.88 |

property stating that communication and driving cannot happen at the same time since
they share common resourc&over Executivgl?] is a model of a subsystem of the

K9 Mars Rover Executive. The model is comprised of a main coordinating component
called Executiveand anExecCondCheckeromponent that is responsible for monitor-

ing state conditions. The property we checked states that for a specific shared variable,
if the Executivereads its value, then thiiexecCondCheckeshould not read the variable
before theExecutiveclears it first.

In [11], four properties of the Gas Station and nine properties of Chiron have been
checked, to study how various 2-way decompositions of these models affect the per-
formance of learning (without alphabet refinement). For most of these properties and
decompositions, the learning approach performs better than non-compositional verifica-
tion and it produces small (one-state) assumptions. For some other properties, learning
does not perform that well, and produces much larger assumptions. To stress-test our
approach, we selected the latter, more challenging, properties for our study here.

Experimental set-up and results We performed two sets of experiments. First, we
studied learning with alphabet refinement Bswaydecompositions (using an experi-
mental set-up similar to [11]), to compare learninigh different alphabet refinement
heuristics to learningvithout alphabet refinement. Second, we compared the recursive
implementation of the refinement algorithm with monolithic (non-compositional) veri-
fication, for increasing number of components. All the experiments were performed on
a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and a 1.0 GB RAM, running Linux
Fedora Core 4 and using Sun’s Java SDK version 1.5.

For the first set of experiments, we used the best two-way decompositions used
in [11] for Gas Station and Chiron. For Gas Station, the decomposition is: the operator
and the first pump in one component, and the rest of the modules in the other. For Chi-
ron, the event dispatchers are one component, and the rest of the modules are the other.
For MER we used the decomposition where half of the users are in one component, and
the other half with the arbiter in the other. Rover is given in two components already.
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Table 2. Comparison of recursive learning with and without alphabet refinement and monolithic verification.

Case No refinement | Refinement + bwd Monolithic
' [AT]Mem.Time[[A][Mem.[ Time | Mem.[Time
Gas Station3(299|238.27 — |25 2.42| 14.65| 1.42 [0.034
4(289/298.238 - | 25| 3.43| 23.60| 2.11 |0.12q
5(313|321.72 - |25|5.29| 49.72 | 6.47 |0.79]
Chiron, 2|344|118.80 - 4 10.96| 2.51 | 0.88 [0.030
Property 2(3|182/114.57 - 4 |1.12| 2.97 | 1.53 |0.067
41182|117.93 - 4 1221| 459 | 2.42 |0.157
5(182/115.10 - 4 | 7.77| 6.97 |13.39|1.22
Chiron, 2(229(134.85 - |11|1.68| 40.75| 1.21 |0.035
Property 3(3|344| 99.12| — [114/28.94{2250.23 1.63 |0.068
41295| 86.03| — [114(35.65 — 2.93 (0.174
5|295| 90.57| — [114(40.49 - 15.73| 1.53
MER 2| 40| 8.66 (24.95 6 | 1.85| 1.94 | 1.04 |0.024
3(440/200.55 - 8 | 3.12| 3.58 | 4.22 |0.107
4(273/107.73 — |10|9.61| 9.62 |14.28| 1.46
5/200| 83.07| — |[1218.95 23.55|143.1127.84
6162 84.96| — |14 |47.60 93.77 - 900

For the second set of experiments, we implemented an additional heuristic for com-
puting theorderingin which the modules are considered by the recursive learning with
refinement. The heuristic is meant to minimize the interface between modules and fol-
lows from the observation that the ordering of the modules in the sequénce. , M,,
influences the sizes of the interface alphaldgts. .. X7 that are used by the recursive
algorithm. We generated offline all possible orders and associated interface alphabets
and chose the order that minimizes the spin|X7|.

The results of the experiments are in Tables 1 and 2 In both tables we vary the value
of the parametel for the parameterized models. We report results for running the learn-
ing framework with 'No refinement’, and for 'Refinement’ with backward ('+bwd’),
forward ("+fwd’) and all '+alIDiff’ heuristics. For each run we repott4|’ (the max-
imumassumption size reached during learning), 'Mem. (th@ximummemory used
by LTSA to perform model checking of the assume-guarantee triples, measured in MB)
and 'Time’ (CPU running time, measured in seconds). Column "Monolithic’ reports
the results of non-compositional model checking. We set a limit of 30 minutes for each
run. The exception is Chiron, Property 3, in our second study (Table 2) where the limit
was 60 minutes, since this property was more challenging). The sign -’ in the memory
or time columns indicate that the limit of 1GB of memory or the time limit has been
exceeded. For these cases, the rest of the data is reported as it was when the limit was
reached.

Discussion The results in both tables show that alphabet refinement improves learning.
Table 1 shows that alphabet refinement improved the assumption size in all cases, and in
a few, up to two orders of magnitude (see Gas Station kith2, 3, Chiron, Property 3,

with £ = 5, MER with & = 3). It improved memory consumption in 10 out of 15 cases.

It also improved running time, as for Gas Station and for MER Witk 3, 4 learning
without refinement did not finish within the time limit, whereas with refinement it did.
The benefit of alphabet refinement is even more obvious in Table 2 where learning
without refinement exceeded the time limit in all but one case, whereas with refinement
it completed in 14 of 16 cases, producing smaller assumption sizes in all the cases, and
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up to two orders of magnitude smaller in a few; the resource consumption was also
improved in all cases, and up to two orders of magnitude (for memory) in a few of
them. The results in Table 1 also indicate that the performance of different refinement
strategies is mostly similar, each one beats the others on some cases, but the 'bwd’
strategy is slightly better. For this reason, for the experiments in Table 2 we fixed the
refinement strategy to 'bwd’.

The results in Table 2 indicate that learning with refinement scales better than
without refinement for increasing number of componentsk Ascreases, the memory
and time consumption of learning with refinement grows slower than that of the non-
compositional model checking reported in column '"Monolithic’. For Gas Station, Chi-
ron (Property 2), and MER, for small values faflearning with refinement consumes
more memory than the corresponding 'Monolithic’, but as the parameter increases, the
gap was narrowing, and for the largest valué téarning with refinement becomes bet-
ter than 'Monolithic’. This leads to cases where, for a large enough parameter value, the
monolithic runs out of memory, whereas learning with alphabet refinement succeeds,
as it is the case for MER with = 6. The rate of growth of the running time for Gas
Station, Chiron, Property 2, and MER is also lower than that of monolithic: with each
increment ofk, the time of monolithic grows by one order of magnitude, whereas that
of learning with refinement grows at most three times, while remaining within the same
oder of magnitude.

Optimizations. Chiron, Property 3, was a challenging case for learning with (or with-
out) alphabet refinement. We therefore looked at it more closely. After inspecting the
models (which were generated automatically as described in [11]), we noticed that sev-
eral modules defined in the model do not influence Property 3. If we eliminate these
modules, the property still holds in the composition of the remaining modules. The per-
formance of learning with refinement is greatly improved when applied to this reduced
system €.g, for k = 3, the size of the largest assumption is 13) and better than mono-
lithic. In the future, we plan to investigate slicing-like techniques to eliminate modules
that do not affect the given property. To improve the running time of our technique,
we will investigate the reuse of learning results across refinement iterations. Currently,
after one refinement stage we restart the learning process from scratch. The property of
alphabet refinement formulated in Proposition 2 in Section 6 facilitates reuse of query
answers obtained during learning. A query asks whether a trace projected on the current
assumption alphabet leads to erroridh || P.,... If the answer is 'no’, by Propaosition 2

the same trace will not lead to error when the alphabet is refined. Thus, we could cache
these query answers. Another feasible direction is to reuse the learning table as de-
scribed in [24]. We also plan to use multiple counterexamples for refinement. This may
enable faster discovery of relevant interface actions, and therefore faster convergence
of our algorithm.

8 Related work
Several frameworks have been proposed to support assume guarantee reasoning [17, 22,

10, 15]. For example, the Calvin tool [13] uses assume-guarantee reasoning for the anal-
ysis of Java programs, while Mocha [2] supports modular verification of components
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with requirements specified based in the Alternating-time Temporal logic. The practical
impact of these previous approaches has been limited because they require non-trivial
human input in defining appropriate assumptions.

In previous work [14, 12], we developed techniques for performing assume-guarantee
reasoning using L*. Since then, several other frameworks that use L* for learning as-
sumptions have been developed — [3] presents a symbolic BDD implementation using
NuSMV. This symbolic version was extended in [20] with algorithms that decompose
models using hypergraph partitioning, to optimize the performance of learning on re-
sulting decompositions. Different decompositions are also studied in [11] where the
best two-way decompositions are computed for model-checking with the LTSA and
FLAVERS tools. We follow a direction orthogonal to the latter two approaches and try
to improve learning not by automating and optimizing decompositions, but rather by
discovering small interface alphabets. Our approach can be combined with the decom-
position approaches, by applying interface alphabet refinement in the context of the
discovered decompositions. L* has also been used in [1] to synthesize interfaces for
Java classes, and in [24] to check component compatibility after component updates.

Our approach is similar in spirit to counterexample-guided abstraction refinement
(CEGAR) [8]. CEGAR computes and analyzes abstractions of programs (usually using
a set of abstraction predicates) and refines them based on spurious counter-examples.
However, there are some important differences between CEGAR and our algorithm. Al-
phabet refinement works on actions rather than predicates, it is applied compositionally
in an assume-guarantee style and it computes under-approximations (of assumptions)
rather than behavioral over-approximations (as it happens in CEGAR). In the future,
we plan to investigate more the relationship between CEGAR and our algorithm.

The work of [16] proposes a CEGAR approach to interface synthesis for Java li-
braries. This work does not use learning, nor does it address the use of the resulting
interfaces in assume-guarantee verification.

Generating assumptions for a component is similar to generating component in-
terfaces to handle intermediate state explosion in compositional reachability analysis.
Several approaches have been defined to automatically abstract a component’s environ-
ment to obtain interfaces [6, 18, 7]. These approaches do not address the incremental
refinement of interfaces, and they could benefit from our new approach.

9 Conclusions

We have introduced a novel technique for automatic and incremental refinement of in-
terface alphabets in compositional model checking. Our approach extends an existing
framework for learning assumption automata in assume-guarantee reasoning. The ex-
tension consists of using interface alphabets smaller an the ones previously used in
learning, and using counterexamples obtained from model checking the components to
add actions to these alphabets as needed. We have studied the properties of the new
learning algorithm and have experimented with various refinement heuristics. Our ex-
periments show improvement with respect to previous learning approaches in terms of
the sizes of resulting assumptions and memory and time consumption, and with respect
to non-compositional model checking, as the sizes of the checked models increase.
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In future work we will address further algorithmic optimizations (as described at the
end of Section 7) and we will perform more experiments to fully evaluate our technique.
On the theoretical side, we will clarify the relationship between our refinement and
classical abstraction-refinement techniques.
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Appendix

cliert [1] Tequest.

clierit [1] Tequest clierd[1] requaest

clierit [3] Tequest clisvt [2] grewd clierd [2] Tequest. clievt[1] zmpt clievd [2] request

Server

et [2] caucel clierit [1] derey cligvt[1] dever

clierit [1] caucel

Fig. 5. Client-Server Example: LTS for Server (as displayed by the LTSA tool)

9.1 Properties of Learning with Refinement

In this section, we discuss in more detail the properties of the proposed learning framework,
including progress of refinement, correctness and termination. We begin with re-stating the cor-
rectness and termination of learningthoutrefinement as proven in [12].
Theorem 1 (Termination and correctness for learning without refinement [12]) Given com-
ponentsM; and M>, and propertyP, the algorithm implemented by the learning framework in
[12] terminates and it returns true if/1 || M2 |= P and false otherwise.

For the termination and correctness of learning with our alphabet refinement, we first prove
progress of refinement. We prove that when the Refiner compésgsandc| =, , they must be
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cliert [2] request

clierd [1]. grant. client[1]. derger

cliert [1]. zravit.
clierit [1] Teqaest. Tetit [2] Tequaest.

@ @

client [1..2] cabcel, dever, gravt 7
\“‘-'l’"’/

cliert [1]. detoer
A_big

{[1] {ramcel, ,TEMW]-M}} clignt [1] request
\>h;¢[l..2].{-:we1,requ.eslclim’ct[2].-:we

tm-{[ll-{m‘ml,nw}
clisnt {[1] {cancel, deryy, WMR 3
c].i.ertt.{_\[ﬂ.\{d\.m_','%, WM[I]q&ﬂ

clievt §[1]. {earcel, dever, gravd, Tequest | [2]. {cancel, dever, gravt )
S

client {[1]. {carcel, deree, grant’, [3]. fcarucel, derge, request}

Fig. 6. Client-Server Example: assumption obtained with the complete interface alphabet (as dis-
played by the LTSA tool)
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different, and their difference contains actions that are nét.imhose are the actions to be added

to X.

Proposition 1 (Progress of alphabet refinement)Let X'y = (aM; UaP)NaMs andX C Xy

be the alphabet of the weakest assumption and that of the assumption at the current alphabet
refinement stage, respectively. ltebe a trace ofMs||A.,» such thatt|s leads to error on

M| Perr by an error tracec, butt| =, does not lead to error oi/; || P..-. Thent| s, # c| s,

and there exists an action in their symmetric difference that is nét.in

Proof. We prove by contradiction that s, # c| =, . Supposé| =, = c| =, . We know that is an
error trace on\/, || P. Since actions of that are not in~; are internal ta\/, || P, thenc| =, also
leads to error o/ || Pe.. But thent| s, leads to error o\, || P...-, which is a contradiction.

We now show that there exists an action in the difference betwgepandc|x, that is
not in X (this action will be added t&’ by alphabet refinement). Tra¢gs, is t| =, with some
interleaved actions front’;. Similarly, c| =, is t] s with some interleaved actions froty,
sincec is obtained by composing the trace LTS with M || Perr. Thust| == c¢| =. We again
proceed by contradiction. If all the actions in the symmetric difference betwjegnandc| =,
were inX, we would have | 5, = t| s= c| = c| 5,, which contradict$| s, # c| =,. O

In order to prove termination and correctness of learning with alphabet refinement, we will
use the following lemma.

Lemma 1. For any componenf\/;, property P, and interface alphabet’, (A, s)(M1){P)
holds.

Proof. Ay, x|s= A, =. If in Definition 1 we substituted., s for M2, we obtain thatM; ||
Aw,x, E Pifandonlyif Ay », E Aw,s. But the latter holds trivially, so we conclude that
M || Aw,=, E P, which is equivalent tdA,, = )(M:)(P), always holdsO

Theorem 2 (Termination and correctness of learning with alphabet refinement — 2 com-
ponents) Given compoenentd/; and M-, and propertyP, the L* algorithmwith alphabet
refinementerminates and returns true ¥/1|| M2 = P and false otherwise.

Proof. Correctness: When the teacher returns true, then correctness is guaranteed by the assume-
guarantee compositional rule. If the teacher returns false, the extended counterexample analysis
reports an error for a trageof Mo, such that| x, in the context ofi/; violates the property (the
same test is used in the algorithm from [12]) hedde || M, violates the property.

Termination: From the correctness of L*, we know that at each refinement stage (with al-
phabetY), if L* keeps receiving counterexamples, it is guaranteed to genetate. At that
point, Oracle 1 will return true (from Lemma 1). Therefore, Oracle 2 will be applied, which will
return either true, and terminate, or a counterexampléhis counterexample is a trace that is
not in L(A.,x). Itis either a real counter example (in which case the algorithm terminates) or
it is a tracet such thatt| = leads to error o/ || P.,.~ by an error trace, butt| =, does not
lead to error onM1 || Perr. Then from Theorem 1, we know thals, # c| =, and there exists
an action in their symmetric difference that is notiih The refiner will add this action (or more
actions depending on the refinemt strategy}t@and the learning algorithm is repeated for this
new alphabet. Sinc&’; is finite, in the worst case’, grows intoX’;, for which termination and
correctness follow from Theorem @.

Theorem 3 (Termination and correctness of learning with alphabet refinement -» compo-

nents). Given compoenentd/;, M-, ... M,, and propertyP, the recursive L* algorithmwith
alphabet refinemenérminates and returns true ¥/, || M:||...||M,, = P and false othrwise.
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Proof. The proof proceeds by induction enand it follows from theorem abovél

Proposition 2. Assume we have componetit§ and M., property P and the corresponding
interface alphabet:;. Let alsoX, X’ be sets of actions such thaE c X’ c Xj. Then:
»C(Aw,z) g E(Aw,E’) g E(A’W,ZI)'

Proof. SinceX C 3, we know thatd,,, > | 5»= A, . By substituting, in Definition 14,, x
for M>, we obtain that{true) M || (Aw,s)(P) if and only if (true) A., = (A, x/). From Propo-
sition 1 we know thattrue) M, || (Aw,s)(P). Therefore(true)A,, =(A,, s/) holds, which
implies thatL(Aw, =) C L(Ay, ). Similarly, L(Ay, 5) C L(Aw,z;)0.
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